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Abstract

Requirements-to-Design-to-Code (R2D2C) is an ap-
proach to the engineering of computer-based systems
that embodies the idea of requirements-based program-
ming in system development. It goes further, however, in
that the approach offers not only an underlying formal-
ism, but full formal development from requirements capture
through to the automatic generation of provably-correct
code. As such, the approach has direct application to the de-
velopment of systems requiring autonomic properties. We
describe a prototype tool to support the method, and il-
lustrate its applicability to the development of LOGOS,
a NASA autonomous ground control system, which ex-
hibits autonomic behavior. Finally, we briefly discuss other
areas where the approach and prototype tool are being con-
sidered for application.

1. Introduction

We have advocated that computer-based systems should
be autonomic [20], and, more specifically, that autonomous
systems are necessarily autonomic [21]. Clearly, too, auto-
nomic systems are inherently autonomous, as they are re-
quired to necessarily adapt and evolve to meet their goals
of being self healing, self configuring, self optimizing, and
self protecting.

Such systems can prove to be exceedingly complex, and
consequently their development extremely difficult. Often,
the complete behavior of the system cannot be foreseen at

the outset, partly because of the evolving nature of the sys-
tem, and partly because it is difficult to capture all of the
necessary domain knowledge before development begins.
Because of this and the system’s emergent behavior (that
is, behavior that is exhibited by a system as it evolves, but
which was not anticipated) the system cannot be fully tested
using traditional methods [18].

Clearly formal methods can go a long way towards solv-
ing these problems, and can reduce reliance on testing.
However, they are still perceived to be difficult to use [4],
and their uptake in industry has not been as commonplace
as one would have expected.

2. Requirements-Based Programming

2.1. Background

Requirements-Based Programming (RBP) has been ad-
vocated [7, 8] as a viable means of developing complex,
evolving systems. It embodies the idea that requirements
can be systematically and mechanically transformed into
executable code.

This may seem to be an obvious goal in the engineer-
ing of computer-based systems, but RBP does in fact go a
step further than current development methods. System de-
velopment, typically, assumes the existence of a model of
reality, called a design (or, more correctly, a design specifi-
cation), from which an implementation will be derived. This
model must itself be derived from the system requirements,
but there is a large “gap” in going from requirements to de-
sign [11]. RBP seeks to eliminate this “gap” by ensuring
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Figure 1. The R2D2C approach and current status of the prototype.

that the ultimate implementation can be fully traced back to
the actual requirements (although, as proposed by its advo-
cates, it does not necessarily entail full mathematical prov-
ability of the equivalence of a set of requirements and its
implementation).

2.2. R2D2C

R2D2C (Requirements-to-Design-to-Code) is a NASA
patent-pending approach to the engineering of complex
computer systems, where the need for correctness of the
system, with respect to its requirements, is particularly high.
This category includes NASA mission software, most of
which exhibits both autonomous and autonomic properties.

The approach, described in greater detail in [11], em-
bodies the main idea of requirements-based programming.
It goes further, however, in that the approach offers not only
an underlying formalism, but also full formal development
from requirements capture through to automatic generation
of provably correct code. Moreover, the approach can be
adapted to generate instructions in formats other than con-
ventional programming languages; these include, for exam-
ple, instructions for controlling physical devices, and rules
embodying the knowledge contained in expert systems. In
these contexts, NASA is currently applying the approach
to the verification of the instructions and procedures to be
generated by the Hubble Space Telescope Robotic Servic-
ing Missions (HRSM) and in the validation of the rule base
used in the ground control of the ACE spacecraft.

In the remainder of this paper we describe a prototype
tool to support the R2D2C method and report on our expe-
riences in applying it to validate the prototype Lights-Out
Ground Operations System (LOGOS), an autonomous sys-
tem exhibiting autonomic properties [21, 22].

3. Requirements to Design to Code

R2D2C takes, as input, system requirements written by
engineers (and others) as scenarios in natural language, or
UML use cases, or some other appropriate graphical or tex-
tual representation. From the scenarios, an automated theo-
rem prover in which the laws of concurrency [9] have been
embedded infers a corresponding process-based specifica-
tion expressed in an appropriate formal language (currently
we are using CSP, Hoare’s language of Communicating Se-
quential Processes [13, 14]).

A process-based specification is far more amenable to
analysis, and also forms a more appropriate basis for code
generation. As much as possible, R2D2C makes use of
widely-available tools and notations that are well-trusted
and that have been demonstrated to be useful in the devel-
opment of high-quality systems.

A “short-cut” approach to R2D2C [10, 11] avoids the use
of an automated theorem prover, which is computationally
expensive. This alternative approach involves the inference
of a corresponding process-based specification (in a lan-
guage we have named EzyCSP) without a theorem prover,
but requires a (one time) proof of the translation in order
to preserve the mathematical underpinnings of the R2D2C
approach. Figure 1 illustrates those parts of the approach
for which we have built a prototype tool (described in the
remainder of this paper), and shows where commercially-
available and public domain tools may be used to support
the approach.

3.1. Prototype Tool

The CSP formal model is the central part of the proposed
approach, which conforms to a Model Driven Architecture
(MDA) [15]. The prototype tool automatically generates the
code from the CSP model (or design) (Figure 2) into which
the tool has already transformed the requirements.

In order to develop a tool based on CSP, two major is-
sues must be addressed — how to translate the CSP model
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into code and how to translate the requirements into the CSP
model. The tool transforms the derived design (CSP model)
into an equivalent software representation (code) using Java
as the target programming language. There were several
reasons for selecting the Java programming language [6]
both for tool implementation and for the target platform:

• Java is a general-purpose, concurrent, class-based,
object-oriented programming language, with very few
implementation and hardware dependencies.

• An off-the-shelf implementation (library) of CSP
for Java [2] is available. While JCSP does not pro-
vide direct CSP-to-Java mapping, it conforms to
the CSP model of communicating systems for Java
multi-threaded applications [16]. There is also support
for distributed JCSP components using JCSP.net [24].

• Java Swing [23], in combination with some available
Java IDEs, greatly simplifies user interface develop-
ment.

• Many Java-based translator development tools are
available.

The prototype tool implementation in Java uses off-the-
shelf components. A Swing-based user interface provides a
transparent layer for entering the requirements and viewing
the resulting model. Figure 3 shows the high-level program
flow.

The translators are implemented using the ANTLR [1]
tool, which provides a framework for constructing recogniz-
ers, compilers, and translators from grammatical descrip-
tions. A discussion of ANTLR and some related tools can
be found in [19]. An English-like input language, specified
as an ANTLR grammar, is used to specify user requirements
(Figure 4). ANTLR uses the grammar to automatically gen-
erate the translator. The translator is then used to generate
the CSP model that corresponds to the user requirements
(Figure 5). Figure 6 shows the graph-based representation
of the system (under development).

4. Experiences in Applying the Prototype Tool

4.1. LOGOS

The Lights-Out Ground Operations System (LOGOS)
is a proof-of-concept NASA system for automatic control
of ground stations when satellites pass overhead and under
their control. LOGOS is a community of autonomous soft-
ware agents, exhibiting autonomic behavior and cooperat-
ing to perform the functions that in the past have been per-
formed by human operators using traditional software tools
such as orbit generators and command sequence planners. It
is designed to operate in “lights out” mode (i.e., without hu-
man intervention except in situations where problems and
anomalies can no longer be dealt with by the system itself).
See [18] and [21] for more detailed discussion of LOGOS
and its autonomic properties.

4.2. LOGOS in R2D2C

We will not consider the entire LOGOS system here. Al-
though a relatively small system, it is too extensive to illus-
trate in its entirety in this paper. Instead, we will take a cou-
ple of example agents from the system, and illustrate their
mapping from natural language descriptions through to sim-
ple Java implementations.

Let us first illustrate, via a trivial example, how scenarios
map to CSP. Suppose we have the following as part of one
of the scenarios for the system:

if the Spacecraft Monitoring Agent receives a
“fault” advisory from the spacecraft the agent
sends the fault to the Fault Resolution Agent

OR
if the Spacecraft Monitoring Agent receives en-

gineering data from the spacecraft the agent
sends the data to the Trending Agent

That part of the scenario could be mapped to structured
text as:

inSMA?fault from Spacecraft
then outSMA!fault to FIRE
else
inengSMA?data from Spacecraft
then outengSMA!data to TREND

The laws of concurrency would allow us to derive the
traces as:

tSMA ⊇ {〈〉, 〈inSMA, fault〉,

〈inSMA, fault, outSMA, fault〉}
⋃

{〈〉, 〈inengSMA, data〉,

〈inengSMA, data, outSMA, data〉}
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From the traces, we can infer an equivalent CSP process
specification as:

SMA = inSMA?fault → (outSMA!fault →
SKIP )
| (inengSMA?data → outengSMA!data →

SKIP )

Let us now consider a slightly larger example, the
LOGOS Pager Agent, and illustrate its implementation in
Java. The pager agent sends pages to engineers and con-
trollers when there is a spacecraft anomaly and there is
no analyst logged on to the system. The pager agent re-
ceives requests from the user interface agent that no ana-
lyst is logged on, gets paging information from the database
agent (which keeps relevant information about each user
of the system — in this case the analyst’s pager num-
ber), and, when instructed by the user interface agent that
the analyst has logged on, stops paging. These scenar-
ios can be restated in more structured natural language as
follows:

if the Pager agent receives a request from the User

Interface agent, the Pager agent sends a re-
quest to the database agent for an analyst’s
pager information and puts the message in a
list of requests to the database agent

OR
if the Pager agent receives a pager number from

the database agent, then the pager agent re-
moves the message from the paging queue
and sends a message to the analyst’s pager and
adds the analyst to the list of paged people

OR
if the Pager agent receives a message from the

user interface agent to stop paging a particular
analyst, the pager sends a stop-paging com-
mand to the analyst’s pager and removes the
analyst from the paged list

OR
if the Pager agent receives another kind of mes-

sage, reply to the sender that the message was
not recognized

The above scenarios would then be translated into CSP.
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PAGER BUSdb waiting,paged = pager.Iin?msg →

case

GET USER INFOdb waiting,paged,pagee,text ifmsg = (START PAGING, specialist, text)

BEGIN PAGINGdb waiting,paged,in reply to id(msg),pager num if msg = (RETURN DATA.pager num)

STOP CONTACTdb waiting,paged,pagee if msg = (STOP PAGING, pagee)

pager.Iout!(head(msg), UNRECOGNIZED) → PAGER BUSdb waiting,paged otherwise

Figure 7. Partial CSP description of the pager agent.

Figure 7 shows a partial CSP description of the pager agent.
This specification states that the process PAGER BUS re-
ceives a message on its “Iin” channel and stores it in a
variable called “msg”. Depending on the contents of the
message, one of four different processes is executed. If
the message has a START PAGING performative, then the
GET USER INFO process is called with parameters of the
type of specialist to page (pagee) and the text to send the
pagee. If the message has a RETURN DATA performative
with a pagee’s pager number, then the database has returned
a pager number and the BEGIN PAGING process is exe-
cuted with a parameter containing the original message id
(used as a key to the db waiting set) and the passed pager
number. The third type of message that the pager agent
might receive is one with a STOP PAGING performative.
This message contains a request to stop paging a particular
specialist (stored in the pagee parameter). When this mes-
sage is received, the STOP PAGING process is executed
with the parameter of the specialist type. If the pager agent
receives any other message than the above three messages,
an error message is returned to the sender of the message
(which is the first item of the list) stating that the message
is “UNRECOGNIZED”. After this, the PAGER BUS pro-
cess is again executed.

The R2D2C prototype tool will produce Java code from
the CSP model as follows:
class Pager extends Thread {

Transaction analystmessage;
Transaction databaserequest;
Transaction messagenotrecognized;
Transaction pagernumber;
Transaction pagerrequest;
Transaction stoppaggingmessage;
boolean running;

public Pager(Transaction analystmessage,
Transaction databaserequest,
Transaction messagenotrecognized,
Transaction pagernumber,
Transaction pagerrequest,
Transaction stoppaggingmessage) {

this.analystmessage = analystmessage;
this.databaserequest = databaserequest;
this.messagenotrecognized =

messagenotrecognized;

this.pagernumber = pagernumber;
this.pagerrequest = pagerrequest;
this.stoppaggingmessage =

stoppaggingmessage;}

public void run() {
int index = 0;
running = true;

while (running) {
switch (index) {
case 0:

while (pagerrequest.committed() ==
false);

Test.out.println("pagerrequest");
Test.out.flush();
while (databaserequest.committed() ==

false);
Test.out.println("databaserequest");
Test.out.flush();
break;

case 1:
while (pagernumber.committed() ==

false);
Test.out.println("pagernumber");
Test.out.flush();
while (analystmessage.committed() ==

false);
Test.out.println("analystmessage");
Test.out.flush();
break;

case 2:
while (stoppaggingmessage.committed() ==

false);
Test.out.println("stoppaggingmessage");
Test.out.flush();
break;

case 3:
while (messagenotrecognized.committed() ==

false);
Test.out.println("messagenotrecognized");
Test.out.flush();
break;}

index++;
index}}}

4.3. Results

A formal specification of LOGOS in CSP had previously
been undertaken by hand [17]. This was most insightful,
highlighting over 80 errors and anomalies in the require-



ments of a relatively small system (LOGOS is based, essen-
tially, on ten interacting agents). While many of these were
minor oversights that would have caused inconveniences,
others were more significant.

A great advantage of using an example for which we al-
ready have a formal specification is that we can compare the
system derived by our prototype tool with the manually de-
rived formal specification.

Our prototype tool was able to uncover all of the er-
rors and anomalies we found with our manual specification.
We were surprised when we first ran it to find that it halted
within seconds, having found yet another error that had been
introduced into the requirements (due to a typographical er-
ror) when changes were made following the original manual
formal specification. The prototype tool can cope with the
LOGOS requirements, generating a design and a Java im-
plementation in a matter of minutes, whereas manual speci-
fication had taken several days and code generation by hand
took several weeks.

5. Future Applications

The prototype tool described in this paper is designed to
support a NASA patent-pending method for Requirements-
Based Programming (RBP). The uniqueness of the method
is not in supporting RBP, but in supporting it with a devel-
opment process that is mathematically tractable over the en-
tire development process. This fully formal development of-
fers levels of assurance and confidence significantly higher
than traditionally available.

The method is not limited to producing executable code,
however [11]. In addition to applying the approach to agent-
based systems (such as LOGOS) as described in this paper,
and to Wireless Sensor Networks (WSNs) [12], we are cur-
rently examining applications of the approach to the verifi-
cation of expert systems and robotic applications.

5.1. Expert Systems

A suitable translator from the C Language Integrated
Production System (CLIPS) [5], rather than natural lan-
guage, enables us to use this technology to examine expert
system rule bases for consistency, etc., with potential appli-
cation to existing automated ground control center opera-
tions (e.g., for the POLAR and ACE missions). More sig-
nificantly, we can generate CLIPS rules from CSP just as
we would generate code in Java. It is expected that this will
be a major asset in capturing domain knowledge for expert
systems, and maintaining correctness throughout the entire
process of expert system development.

In addition, it will allow us to reverse engineer, validate,
and ultimately re-engineer existing rule bases.

While an expert system might not immediately strike us
as being an autonomic system, complex expert systems do
indeed meet all of the necessary criteria. NASA uses expert
systems, for example, to perform automated ground control
and monitoring for several classes of spacecraft. Rule bases
must constantly be updated based on data received from the
spacecraft, to ensure that the spacecraft is protected from
unsafe situations, and operating at peak performance.

5.2. Robotic Operations

We have begun exploratory work to determine how the
approach and tool may be used in validating robotic proce-
dures to be used in the Hubble Robotic Servicing Mission
(HRSM).

Robotic devices will be used in the replacement of cam-
eras, etc. on the Hubble Space Telescope (HST). We expect
that the tool will prove to be useful in performing what-if
analysis of ordering of instructions in complex repair pro-
cesses, in particular where resources (time being one of the
most precious resources) are limited.

Additionally, the approach may be useful in actually gen-
erating instructions for the robotic arm that will be used to
perform much of the maintenance, in much the same way
as it currently generates Java code.

6. Conclusions

The difficulty of developing many autonomous and auto-
nomic applications is explained by their inherent complex-
ity. Often, required autonomous behavior results in emer-
gent, unexplained behavior that could not, reasonably, have
been foreseen. The need to exhibit autonomic behavior of-
ten compounds the situation, giving rise to necessary self-
managing behavior that could not reasonably be expected to
be the subject of even the most exhaustive testing plans.

Only with fully formal underpinnings for the develop-
ment process can we be assured of correctness [3]. Formal
development processes will become more and more impor-
tant in future autonomic computing systems, and the con-
tinued success of the Autonomic Computing initiative is
predicated on the ability to develop complex systems that
both exhibit autonomic self-managing behaviors and oper-
ate correctly (with respect to their requirements).

The experience related in this paper leads us to be con-
fident that such tools will offer greater levels of assurance
in other domains, and enhance both the quality and perfor-
mance of future autonomous and autonomic systems.
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